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ABSTRACT

We present a framework for feature detection in 3-D using
steerable filters. These filters can be designed to optimally
respond to a particular type of feature by maximizing sev-
eral Canny-like criteria. The detection process involves the
analytical computation of the orientation and correspond-
ing response of the template. A post-processing step con-
sisting of the suppression of non-maximal values followed
by thresholding to eliminate insignificant features concludes
the detection procedure. We illustrate the approach with the
design of feature templates for the detection of surfaces and
curves, and demonstrate their efficiency with practical ap-
plications.

1. INTRODUCTION

The detection of features in three-dimensions is a computa-
tionally intensive task and thus represents an ideal applica-
tion for the steerable filters described by Freeman et al. [1].
These filters can be very efficiently rotated by taking a lin-
ear combination of basis filters. Only very few approaches
for 3-D feature detection using steerable filters currently ex-
ist, often using empirical approaches for the construction of
the filters [2]. Traditionally, feature detection in 3-D is per-
formed by computing the eigenvalues of the Hessian matrix
[3]. In this paper, we provide a general framework for fea-
ture detection in three-dimensional data using filters that are
optimal with respect to several Canny-like criteria [4]. We
show how such filters can be designed to optimally respond
to a particular type of feature, and describe the process of
computing their optimal orientation and the corresponding
response. Our approach follows the classical framework
used in two-dimensional feature detection, which consists
of a filtering step followed by non-maximum suppression
and thresholding. Two types of structures frequently en-
countered in volumetric data are curves and surfaces. We
derive optimal templates for the detection of these two types
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Fig. 1. Isosurface representations of the curve (a) and sur-
face (b) detectors.

of features using the class of steerable filters based on sec-
ond order Gaussian derivatives. In this context we also
introduce a novel non-maximum suppression method for
curves.

2. STEERABLE FEATURE DETECTION IN SPACE

The detection of a specific feature at a particular point in
3-D space involves the determination of the optimal orien-
tation

(θ∗(x), φ∗(x)) = arg max
θ,φ

(f(x) ∗ h(Rθ,φx)) , (1)

where h(Rθ,φx) is an appropriate feature template rotated
by the Euler angles θ and φ. The magnitude of the response
is given by

r∗(x) = f(x) ∗ h(Rθ∗,φ∗x). (2)

Since a direct implementation of this detection procedure is
computationally intensive, we use the steerable formulation
introduced by Freeman et al. [1].

2.1. Family of steerable filters

The framework of steerable filters is ideally suited for our
application since the rotated version of a steerable template
can be obtained by taking a linear combination of a small
number of basis filters. We choose the family of detectors
defined by the linear combination of partial derivatives of
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an isotropic 3-D Gaussian function g(x, y, z):

h(x, y, z) =
M∑

k=1

k∑
i=0

k−i∑
j=0

αk,i,j
∂i

∂xi

∂j

∂yj

∂k−i−j

∂zk−i−j
g(x, y, z)︸ ︷︷ ︸

hk,i,j(x)

.

(3)
The convolution of the volume f(x) by a rotated version of
the steerable filter h(x) then becomes

f(x) ∗ h(Rθ,φx) =
M∑

k=1

k∑
i=0

k−i∑
j=0

bk,i,j(θ, φ) f ∗ hk,i,j(x),

(4)
where the weights bk,i,j are polynomials in (cos θ sinφ),
(sin θ sinφ), and cos φ. In the next sections we extend the
2-D formulation established in [5] to derive optimal feature
detectors in three dimensions.

2.2. Design of optimal filters

We use the approach specified in [5] to derive the optimal
detector. We assume a certain feature f0(x) with a speci-
fied orientation (say along the x axis) and obtain the crite-
rion. The signal energy term is given by the response of the
detector at the origin:

S = (f0 ∗ h) (0) =
∫

R3
f0(x)h(−x)dx. (5)

Assuming that the input signal is corrupted by additive white
noise of unit variance, the variance of its output is given by
the energy of the filter:

N =
∫

R3
|h(x)|2 dx. (6)

The extension of the regularization term used in [5] for the
suppression of false oscillations is also straightforward; its
expression is given by

R =
∫

R3

(
|hxx(x)|2 + |hyy(x)|2 + |hzz(x)|2

)
dx. (7)

The localization term penalizes the average error in the lo-
cation estimate of the feature. In 3-D, the features of interest
are often elongated along multiple directions (e.g. 0-D fea-
tures like points, 1-D features like curves and 2-D features
like surfaces). In these cases, we have to minimize the local-
ization error along all the co-dimensions. For a m-D feature
in R3, the localization error can be quantified as

Loc = −
∫

R3
f0(x) 4(3−m)h(−x)dx, (8)

where 4(3−m) denotes a Laplacian operator oriented along
the 3−m-dimensional hyperplane orthogonal to the feature

direction. For example, for a line feature oriented along the
x axis, the operator is 42 = ∂yy + ∂zz .

Having obtained the expressions for the individual terms,
we follow exactly the same optimization procedure as in [5]
to obtain the detectors1; we maximize

C = S · Loc − µR, (9)

subject to the constraint N = 1.
We now consider two special cases to illustrate the util-

ity of the approach, focusing on second order (M = 2)
curve and surface detectors. To derive the curve detector, we
set f0(x) = δ(y, z), a Dirac delta function oriented along
the x axis. We set2 µ = 0 to obtain the optimal curve detec-
tor

hcurve =
1

2
√

2π

(
−2

3
gxx + gyy + gzz

)
(10)

Similarly, we obtain the surface detector by setting f0(x) =
δ(x), which yields

hsurface =
1

8π
√

6
(−4 gxx + gyy + gzz) (11)

The impulse responses of the curve and surface detectors
are illustrated in Fig. 1-a & b, respectively.

2.3. Feature detection

Since the detectors differ only in the weight of the gxx term3,
we express the two detectors in a common form:

h(x) = (gxx + gyy + gzz)︸ ︷︷ ︸
4g

−(α + 1)gxx, (12)

where α = 2/3 for the curve detector and α = 4 for the sur-
face detector. Note that 4g is an isotropic 3-D Laplacian; it
is invariant of rotation. h(x) can be rotated to an orientation
specified by v = (cos θ sinφ, sin θ sinφ, cos φ) as

h(Rθ,φx) = (gxx + gyy + gzz)− (α + 1) vTHgv, (13)

where Hg denotes the 3-D Hessian matrix of g(x). We
rewrite this expression as

h(Rθ,φx) = vTAgv (14)

where Ag = (gxx +gyy +gzz)I−(α+1)Hg (I denotes the
identity matrix). The linearity of convolution implies that

f(x) ∗ h(Rθ,φx) = vTAf∗gv. (15)

1The derivation of the detectors in higher dimensions involves exactly
the same approach

2Since second order detectors do not oscillate much, the regularization
term is not required. It is essential for higher order detectors.

3We neglect the normalization factor to obtain simpler expressions.
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Therefore the response of the filter and its optimal orienta-
tion are given by

r∗ = λmax (16)

v∗ = emax (17)

where λmax and emax are the maximum eigenvalue and cor-
responding eigenvector of Af∗g .

2.4. Implementation

In order to implement these detectors, one needs to evaluate
the 3×3 matrix Af∗g for each position x. This is achieved
by convolving the input signal with the six separable 3-D
basis templates (gxx, gyy, gzz, gxy, gxz, gyz), which consti-
tutes the most important part of the computational load. The
eigenvalues are determined as the analytical solution of the
3rd degree characteristic equation. When the multiplicity of
the principal eigenvalue is equal to one, it implies that the
rank of the matrix M = A − λmaxI must be 2, and thus
that two rows of M are linearly independent. We also know
that the eigenvector corresponding to λmax is orthogonal to
these rows of M (since Mv = 0). Therefore, the eigen-
vector can be efficiently obtained by finding two linearly
independent rows of M and computing their cross-product.
We also exploit the symmetry of M to further speed up the
computations.

3. NON-MAXIMUM SUPPRESSION

3.1. Surface detector

Non-maximum suppression for the surface detector is triv-
ial and analogous to the procedure for ridge detection in 2D.
By construction, the detector’s orientation is orthogonal to
the feature and hence to the surface. For a point that is de-
tected as being part of a surface, non-maximum suppression
is performed by taking the vectors that are orthonormal to
the surface in this point, and by interpolating for the value
at the corresponding coordinates (see Fig. 2-b). We use
linear interpolation, since its precision is sufficient for the
application in addition to being computationally simple.

3.2. Curve detector

The procedure is different for the curve detector, since the
optimal orientation of the detector is along the direction of
the feature. Therefore, to be retained, the value of a point
x needs to be higher than the values that are orthonormal to
the feature in this point. Since we are working in a discrete
representation, we need to interpolate for the values on the
unit circle that is orthogonal to the feature in the point con-
sidered (see Fig. 2-a). To simplify this process, we take
advantage of the concavity of linear interpolation (i.e., in-
terpolation between two points cannot yield a value that is

(a) (b)

Fig. 2. Representations of the schemes used for non-
maximum suppression in the case of curve (a) and surface
detection (b). For the curve detector, we consider only the
neighborhood points that are needed for the interpolation.

larger than the maximum of the points used in the interpo-
lation). The circle is always contained in the cubic neigh-
borhood of 26 points around x (Fig. 2-a). The influence of
these points in the linear interpolation on the circle is maxi-
mal at the position that corresponds to their projection onto
the circle. Thus, non-maximum suppression is performed
by first computing the projection of the neighborhood points
onto the plane that is orthogonal to the feature orientation.
Normalization of the resulting vectors yields the locations
on the unit circle at which we need to interpolate. If any of
the values obtained are superior to the value in x, the point is
suppressed. In some cases, however, the procedure outlined
above will not be sufficient. Consider the response of the
detector to an impulse. It corresponds to a second derivative
of a Gaussian, and for every point within the spot, the orien-
tation of the detector is towards the impulse. It is easy to see
that the non-maximum suppression will fail to remove the
points in the response. To solve the problem, a second itera-
tion of point suppression is applied, based on the number of
direct neighbors in the plane orthogonal to the feature orien-
tation for every point x. If too many neighbors are detected,
the point is discarded. The thresholding step concluding the
detection procedure can either be performed manually, or
by selecting a criterion such as the percentage of voxels to
be retained.

4. EXAMPLES AND APPLICATIONS

4.1. Surface detection

A promising application is the detection of fractures in cat-
aclastic rock from x-ray computer tomograms (Fig. 3-a &
b). The tomograms4 present a high amount of noise due to
the density and thickness of the samples. While the frac-
tures are often invisible from the exterior of the sample,
they become visible in the tomogram due to the air they
encompass. Fig. 3-c shows the result of the detection after
non-maximum suppression and thresholding. Here the de-
tector size and threshold have been set in order to isolate the
largest fracture present in the sample.

4Courtesy of P. Christe, GEOLEP, EPFL
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Fig. 3. (a) XY-slice of a volume of cataclastic rock.
(b) XZ-slice of the sample. (c) 3-D view of the result of the
detection, showing the principal fracture in the sample.

4.2. Curve detection

A problem ideally suited for curve detection is determin-
ing the location and orientation of actin filaments in lim-
ited angle electron tomography [6]. Among the difficulties
with such data are the low signal-to-noise ratio and lim-
ited resolution. Additionally, the density of the filaments
is high and there are frequent intersections and branchings
(see Fig. 4-a & b). In the test data5, other structures such
as ribosomes are present. These, along with strong noise in
feature-less regions, can lead to false detections. Neverthe-
less, we are able to successfully detect most of the filaments
(see Fig. 4-c). Note that in addition to the detected curve
segments, we also know their orientation. This information
can be extremely useful in determining the branching angle
between intersecting filaments, which is of great practical
significance for biological interpretation.

The post-processing steps applied here consist of thresh-
olding based on the filter’s output to discount small fea-
tures that are not likely to be filaments. As seen in Fig.
4-c, this can lead to discontinuities in the detections. Fu-
ture work will consist of developing more sophisticated ap-
proaches for post-processing that are beyond simple voxel-
wise thresholding (e.g., statistical analysis based on clus-
ters).

5. CONCLUSION

We have proposed a general approach for the design of op-
timal 3-D steerable feature detectors. Valid for the family
of detectors based on Gaussian derivatives of any order, the
approach was further specified and illustrated for detectors
based on second order derivatives of Gaussians. We then
derived two filters suitable for the detection of surfaces and
curves, respectively, and showed their efficiency in practical
applications.

5Courtesy of A.S. Frangakis [6]

(a) (b)

(c)

Fig. 4. (a) and (b): two slices of the EM-tomogram in which
the filaments shown in (c) were detected. (c) 3-D isosurface
representation of the detected actin filaments. In reality the
detected filaments are a series of connected points in space.
This result was obtained by performing the detection on a
section of 20 images (of size 256×256).
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